
django-inviteme-form Documentation
Release 1.0a

Daniel Rus Morales

May 28, 2012

CONTENTS

i

ii

django-inviteme-form Documentation, Release 1.0a

Django-inviteme provides a simple contact form that only hits the database after the user confirm her email address.
It sends threaded emails to avoid response blocking.

CONTENTS 1

django-inviteme-form Documentation, Release 1.0a

2 CONTENTS

CHAPTER

ONE

DEMO PRPJECT

Django-inviteme comes with a demo project to see the app in action.

1.1 Demo quick setup

1. cd into the demo directory

2. python manage syncdb will create a simple SQLite db file for the demo.

3. Run the server python manage runserver and browse http://localhost:8000

1.2 Email settings

By default the demo project send email messages to the standard output. You can customize a few email settings to
allow Django sending emails. This will allow you to receive email messages with confirmation URLs that actually
work.

Edit the demo/settings.py file, go to the end of the file and customize the following settings. Provide actual
values of your email address and email provider:

EMAIL_HOST = "" # gmail: "smtp.gmail.com"
EMAIL_PORT = "" # gmail: "587"
EMAIL_HOST_USER = "" # gmail: user@gmail.com
EMAIL_HOST_PASSWORD = ""
EMAIL_USE_TLS = True # gmail

DEFAULT_FROM_EMAIL = "Your site name <user@gmail.com>"
SERVER_EMAIL = DEFAULT_FROM_EMAIL

Fill in actual EMAIL settings above, and comment out the
following line to let the django demo sending actual emails
EMAIL_BACKEND = ’django.core.mail.backends.console.EmailBackend’

INVITEME_NOTIFY_TO = "Your name <user@gmail.com>"

The domain used in the links sent by email refers to example.com and thus are not associated with your django
development web server. Enter in the admin UI and change the domain name to something like localhost:8000.

3

http://localhost:8000

django-inviteme-form Documentation, Release 1.0a

1.3 Register a signal receiver

After trying the demo site you may like to add a receiver for any of the signals sent during the workflow.

Read the Signals to know more about Django-inviteme signals.

Read the Signals and receivers in the Tutorial to see an example.

4 Chapter 1. Demo prpject

CHAPTER

TWO

TUTORIAL

Django-inviteme is a reusable app that relies on its own code and doesn’t require any other extra app.

Installation

Installing Django-inviteme is as simple as checking out the source and adding it to your project or PYTHONPATH.

Use git, pip or easy_install to check out Django-inviteme from Github or get a release from PyPI:

1. Use git to clone the repository, and then install the package (read more about git):

• git clone git://github.com/danirus/django-inviteme.git and

• python setup.py install

2. Or use pip (read more about pip):

• Do pip install django-inviteme, or

• Edit your project’s requirements file and append either the Github URL or the package name
django-inviteme, and then do pip install -r requirements.

3. Or use easy_install (read more about easy_install):

• Do easy_install django-inviteme

2.1 Configuration

1. Add ’inviteme’ to your INSTALLED_APPS setting.

2. Add url(r’^invite/’, include(’inviteme.urls’)) to your urls.py.

3. Create a inviteme directory in your templates directory and copy the default templates from django-inviteme
into the new created directory.

4. Run python manage.py syncdb that creates the inviteme_contact_mail table.

2.1.1 Customization

1. Optionally you can add some settings to control Django-contactme behaviour (see Settings), but they all have
sane defaults.

2. Customize the templates (see Templates) in your inviteme templates directory to make them fit in your design.

5

http://github.com/danirus/django-inviteme
http://pypi.python.org/
http://git-scm.com/
http://www.pip-installer.org/
http://github.com/danirus/django-inviteme
http://packages.python.org/distribute/easy_install.html

django-inviteme-form Documentation, Release 1.0a

2.2 Workflow

Workflow described in 3 actions:

1. Get the Contact Form.

1. Render the Contact Form page. Omit this at will by using the render-mail-form templatetag (see Tem-
platetags) in your own templates.

2. Post the Contact Form.

1. Check if there are form security errors. Django_ContactMe forms are protected with timestamp,
security_hash and honeypot field, following the same approach as the built-in Django Comments
Framework. In case of form security errors send a 400 code response and stop.

2. Check whether there are other form errors (basically check if the email field is empty). In such a case render
the Mail Form again, with the form errors and stop.

3. Send signal inviteme.signals.confirmation_will_be_requested. If any receiver returns
False, send a discarded response to the user and stop.

4. Send a confirmation email to the user with a confirmation URL.

5. Send signal inviteme.signals.confirmation_requested.

6. Render a “confirmation has been sent to you by email” template.

3. Visit the Confirmation URL.

1. Check whether the token in the confirmation URL is correct. If it isn’t raise a 404 code response and stop.

2. Create a ContactMail model instance with the email address secured in the URL.

3. Send signal confirmation_received. If any receiver return False, send a discarded response to the user
and stop.

4. Send an email to settings.INVITEME_NOTIFY_TO addresses indicating that a new invitation request has
been received.

5. Render a “your invitation request has been received, thank you” template.

2.2.1 Creating the secure token for the confirmation URL

The Confirmation URL sent by email to the user has a secured token with the contact form data. To create the token
Django-ContactMe uses the module signed.py authored by Simon Willison and provided in Django-OpenID.

django_openid.signed offers two high level functions:

• dumps: Returns URL-safe, sha1 signed base64 compressed pickle of a given object.

• loads: Reverse of dumps(), raises ValueError if signature fails.

A brief example:

>>> signed.dumps("hello")
’UydoZWxsbycKcDAKLg.QLtjWHYe7udYuZeQyLlafPqAx1E’

>>> signed.loads(’UydoZWxsbycKcDAKLg.QLtjWHYe7udYuZeQyLlafPqAx1E’)
’hello’

>>> signed.loads(’UydoZWxsbycKcDAKLg.QLtjWHYe7udYuZeQyLlafPqAx1E-modified’)
BadSignature: Signature failed: QLtjWHYe7udYuZeQyLlafPqAx1E-modified

6 Chapter 2. Tutorial

https://docs.djangoproject.com/en/1.3/ref/contrib/comments/
https://docs.djangoproject.com/en/1.3/ref/contrib/comments/
http://github.com/simonw/django-openid

django-inviteme-form Documentation, Release 1.0a

There are two components in dump’s output UydoZWxsbycKcDAKLg.QLtjWHYe7udYuZeQyLlafPqAx1E,
separatad by a ‘.’. The first component is a URLsafe base64 encoded pickle of the object passed to dumps(). The
second component is a base64 encoded hmac/SHA1 hash of “$first_component.$secret”.

Calling signed.loads(s) checks the signature BEFORE unpickling the object -this protects against malformed pickle
attacks. If the signature fails, a ValueError subclass is raised (actually a BadSignature).

2.3 Signals and receivers

The workflow mentions that django-inviteme sends 3 signals:

1. confirmation_will_be_requested: Sent just before a confirmation message is requested.

2. confirmation_requested: Sent just after a confirmation message is requested.

3. confirmation_received: Sent just after a confirmation has been received.

See Signals to know more.

You may want to extend django-inviteme by registering a receiver for any of this signals.

An example function receiver might check the datetime a user submitted a contact message and the datetime the
confirmation URL has been clicked. If the difference between them is over 7 days the message could be discarded
with a graceful “sorry, too old message” template.

Extending the demo site with the following code would do the job:

#--
append the code below to demo/views.py:

from datetime import datetime, timedelta
from inviteme import signals

def check_submit_date_is_within_last_7days(sender, data, request, **kwargs):
plus7days = timedelta(days=7)
if data["submit_date"] + plus7days < datetime.now():

return False
signals.confirmation_received.connect(check_submit_date_is_within_last_7days)

#---
change get_instance_data in inviteme/forms.py to cheat a bit and
make Django believe that the contact form was submitted 7 days ago:

def get_instance_data(self):
"""
Returns the dict of data to be used to create a contact message.
"""
from datetime import timedelta # ADD THIS

return dict(
email = self.cleaned_data["email"],

submit_date = datetime.datetime.now(), # COMMENT THIS
submit_date = datetime.datetime.now() - timedelta(days=8), # ADD THIS

)

Try the demo site again and see that the inviteme/discarded.html template is rendered after clicking on the confirmation
URL.

2.3. Signals and receivers 7

django-inviteme-form Documentation, Release 1.0a

8 Chapter 2. Tutorial

CHAPTER

THREE

SIGNALS

List of signals sent by the Django-inviteme app.

3.1 Confirmation will be requested

inviteme.signals.confirmation_will_be_requested Sent just before a confirmation message is requested.

A message is sent to the user right after the contact form is been posted and validated to verify the user’s email
address. This signal may be used to ban email addresses or check message content. If any receiver returns False
the process is discarded and the user receives a discarded message.

3.2 Confirmation has been requested

inviteme.signals.confirmation_requested Sent just after a confirmation message is requested.

A message is sent to the user right after the contact form is been posted and validated to verify the user’s email
address. This signal may be uses to trace contact messages posted but never confirmed.

3.3 Confirmation has been received

inviteme.signals.confirmation_received Sent just after a confirmation has been received.

A confirmation is received when the user clicks on the link provided in the confirmation message sent by email.
This signal may be used to validate that the submit date stored in the URL is no older than a certain time. If any
receiver returns False the process is discarded and the user receives a discarded message.

See a simple example of a receiver for this signal: Signals and receivers, in the Tutorial.

9

django-inviteme-form Documentation, Release 1.0a

10 Chapter 3. Signals

CHAPTER

FOUR

TEMPLATETAGS

Django-inviteme has a templatetag to render the contact form.

4.1 render_contact_form

Sites may use a hidden div that fadeIn/slideUp when clicking on request an invitation link. Use the
render_mail_form templatetag to render the mail form. The inviteme/form.html template will then be
used to render the form.

11

django-inviteme-form Documentation, Release 1.0a

12 Chapter 4. Templatetags

CHAPTER

FIVE

SETTINGS

This is the comprehensive list of settings django-inviteme recognizes.

5.1 INVITEME_SALT

Optional

This setting establish the ASCII string extra_key used by signed.dumps to salt the contact form hash. As
signed.dumps docstring says, just in case you’re worried that the NSA might try to brute-force your SHA-1
protected secret.

An example:

INVITEME_SALT = ’G0h5gt073h6gH4p25GS2g5AQ25hTm256yGt134tMP5TgCX$&HKOYRV’

Defaults to an empty string.

5.2 INVITEME_NOTIFY_TO

Optional

This setting establish the email address that will be notified on new contact messages. May be a list of email addresses
separated by commas.

An example:

INVITEME_NOTIFY_TO = ’Alice <alice@example.com>, Joe <joe@example.com>’

Defaults to settings.ADMINS.

13

django-inviteme-form Documentation, Release 1.0a

14 Chapter 5. Settings

CHAPTER

SIX

TEMPLATES

List of template files coming with Django-ContactMe.

inviteme/contactme.html Entry point for the Django-ContactMe form. Template rendereded when visiting the
/contact/ URL. It makes use of the render_contact_form templatetag (see Templatetags).

inviteme/form.html Used by the templatetag render_contact_form (see Templatetags).

inviteme/preview.html Rendered either when the contact form has errors or when the user click on the preview
button.

inviteme/confirmation_email.txt Email message sent to the user when the contact form is clean, after the user clicks
on the post button.

inviteme/confirmation_sent.html Rendered if the contact form is clean when the user clicks on the post button and
right after sending the confirmation email.

inviteme/discarded.html Rendered if a receiver of the confirmation_received signal returns False. The
signal confirmation_received is sent when the user click on the URL sent by email to confirm the
contact message. See Signals.

inviteme/accepted.html Rendered when the user click on the URL sent by email to confirm the contact message. If
there are no receivers of the signal confirmation_received or none of the receivers returns False, the
template is rendered and a ContactMsg model instance is created.

15

django-inviteme-form Documentation, Release 1.0a

16 Chapter 6. Templates

CHAPTER

SEVEN

QUICK START

1. Add inviteme to INSTALLED_APPS.

2. Add url(r’^invite/’, include(’inviteme.urls’)) to your root URLconf.

3. syncdb, runserver, and

4. Hit http://localhost:8000/invite/ in your browser!

17

http://localhost:8000/invite/

django-inviteme-form Documentation, Release 1.0a

18 Chapter 7. Quick start

CHAPTER

EIGHT

WORKFLOW IN SHORT

The user...

1. Clicks on the request an invitation link of your site.

2. She types her email address and clicks on request.

3. Then Django-Inviteme:

1. Creates a token with the form data.

2. Sends an email to her with a confirmation URL containing the token.

1. She receives the email, she opens it, and she clicks on the confirmation link.

2. Then Django-Inviteme:

1. Check that the token is correct and creates a ContactEmail model instance.

2. Sends an email to INVITEME_NOTIFY_TO addresses notifying that a new contact email has arrived.

3. And shows a template being grateful to her for the message.

Read a longer workflow description in the Workflow section of the Tutorial.

19

